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SUMMARY 
In this paper we consider a rather general optimal control problem involving ordinary differential equations with 
delayed arguments and a set of equality and inequality restrictions on state- and control va~iaMes. For this problem 
a maximum principle is given in pointwise form, using variational techniques. From this maximum principle necessary 
conditions are derived, as well as a Lagrange-like multiplier rule. Details may be found in ref. [2], together with 
extensions to the Hamilton-Jacobi equation and free end point problems. 

1. Introduction 

Recently the theory of optimal control problems has been developed into several directions. 
Concerning problems in which a given integral has to be minimized under restrictions 
((in-) equality restrictions and differential equations) the introduction of delays in the inde- 
pendent variable can be mentioned, as well as the generalization to restrictions on both the 
state- and control variables. 

Among others, Halanay [3], Hughes [6], [7] Pontryagin [9] and Sabbagh [10] have treated 
variational and optimal control problems with delays. On the other hand, T imman [11] and 
Nottrot  [8], developed methods to treat problems with inequality restrictions on the state- 
and control variables. 

The scope of this paper is to bridge both developments in a theory in which state variables 
and control variables are subjected to restrictions and in which a single constant delay occurs. 
The treatment of the inequality restrictions is in many respects similar to that given by Nottrot.  
The occurrence of a delay however requires nontrivial modifications. It should be mentioned 
that the results of these chapters include those for problems without delays. 

In this paper the maximum principle is derived for optimal control problems of a general 
(nonlinear) structure, involving a single time delay z in both the state- and control variables 
and with restrictions on both types of variables. This maximum principle furnishes a starting 
point for the derivation of necessary conditions. 

It is worth while to note that the restriction to one constant delay is not very essential and 
facilitates the reading considerably. It is not difficult to generalize the results obtained in this 
paper to problems which include: 
- delays which are multiples of z, i.e. problems which involve arguments t, t -  z, t -  2z, etc. ; 
- one nonconstant delay z(y(t) ,  t) depending on the state y(t) of the system and on t; see 

e.g. Asher and Sebesta [1]. 
Moreover, an arbitrary number  of nonconstant delays can be considered in the problem 

statement, as Halanay did in [3]. The restriction to one constant delay, however, Will furnish 
essential information about  the structure of the difficulties to be encountered in any general- 
ization. 

2. Statement of the problem 

In the following t will indicate an independent variable ("time"), y is a vector valued function 
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Y n 

yl (i= 1 . . . . .  n) are called the state variables and v is the vector valued function 

t;) 
v k (k = 1 . . . . .  m) are called the control variables. 

Let [To, T1] be a time interval and z a positive number less than T t - T  o. Suppose that 
e i ( i= 1 . . . . .  n) and flk (k= 1 . . . . .  m) are given functions on [To - z ,  To], which are at least twice 
piecewise continuously differentiable; y and v are defined on [ T o - z ,  T1]. 

Consider those continuous solutions y = (y~ . . . . .  y ')  of the initial value problem 

dy~i = f i ( t ,  y(t), y ( t - O ,  v(t), v ( t - z ) ) ,  i = 1, n ,  
dt "'" 

T~ < t < T* ; (2.1) 
y i ( t )=~ i ( t ) ,  i = 1  . . . .  ,n,  T o - z < - t < < - T o ;  

vk(t)= fig(t), k =  1 . . . . .  m, T o - z < t <  T O , 

which for properly chosen vt . . . . .  v" satisfy the fixed end point condition y(T1)= I11 and which 
minimize the integral 

jr1 F(t,  y(t), y ( t - z ) ,  v(t), v ( t - z ) ) d t  (2.2) 
ro 

subject to the restrictions 

qSJ(t, y(t), y ( t - z ) ,  v(t), v ( t - z ) )  <= O, j = 1 . . . . .  r (2.3) 

(which are regarded as restrictions on the control variables) and 

gk(t, y(t)) < 0 ,  k = 1,. . . ,  v, (2.4) 

the state variables restrictions. 
Such solutions will be called extremals. It is assumed that at least one extremal exists con- 

necting the points Yo=y(To)=~(To)  and II1. We assume that v + r <  m*. 
It is supposed that f~, F, ~b j and gg are piecewise continuous functions of all arguments and 

that these functions have piecewise continuous partial derivatives of first and second order 
with respect to their 2 nd, 3 rd, 4 th and 5 th arguments (which is sufficient for our purposes); 
moreover Ogk/& (k = 1 . . . . .  v) are supposed to be piecewise continuous too. 

In general the control variables may have jump discontinuities at a number of points in the 
interval (To, T1). These discontinuities will cause so-called "corner points", i.e. points at which 
the derivatives of the (continuous) state variables show a jump. 

Even if not stated explicitly any relation involving derivatives which is considered in the 
sequel is understood to be considered in (open) intervals in [To, T1] not containing corner 
points in its interior. 

When dealing with retarded or advanced arguments we use the following notations 

t~= t - i v ,  i = 0 ,  +1,  + 2 , . . .  ; 

yi(t) = y(t,) = y ( t - i z ) ,  so y_i(t)  = y ( t - i )  = y ( t + i z ) ,  

vi(t) = v ( t l )=  v ( t - i z ) ,  etc. 

* This assumption may be weakened if there are control restrictions which do not explicitly depend on y(t) and 
y(t-z). 
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With respect to such arguments  we define every func t ion  o f  t to be identically zero outside 
[ To, T1] unless specified otherwise (as in the case of y (t) and v (t), which are defined on [ T o - z, To] 
by (2.1)). 

Fo r  specified values of its arguments a restriction is called active on some open subinterval of 
[To, T~] if the equality sign holds on this subinterval. 

Suppose that the interval [To, Ta] can be part i t ioned into a finite number  of subintervals 
A ~ = [%_ 1, zt) (l = 1 . . . . .  2) with T O = r0, T 1 = "cz, such that on every interval A t certain restrictions 
are active, whereas the other  restrictions are not. Let  

CJ(t, yo(t),  yl(t),  vo(t ), v l ( t )  ) = O, 

(fl(t ,  yo(t),  y l  (t), vo(t ), vl (t) ) < O, 

9 k (t, yo(t))  = O, 

gk (t, yo(t))  < O, 

j = 1 . . . . .  q ( q < m )  ; 

j = q + l  . . . .  , r  ; 

k = l  . . . . .  p ;  

k = # + l  . . . . .  v .  

(2.5) 

on some interval A~; clearly q and # depend on I. 
We assume every interval A z to be of length less than z. This is a rather  formal assumption 

since it can easily be satisfied by choosing "dummy"  part i t ioning points. 
The active restrictions play an impor tant  role in the present theory since a variat ion of any 

of the arguments  should not  cause the restriction functions to become positive. 

3. Reformulation of the problem 

In the calculus of variations, necessary condit ions for minimizat ion problems are derived by 
considering variations of the state variables. In opt imal  control  problems however, these 
variations are due to variations of the control  variables. The latter variations should be chosen 
in such a way that the restr ict ions--especial ly the active ones - -a re  not  violated. Now the 
control  variables (and hence its variations) occur explicitly in the control  variable restrictions 
(2.3) but not in the state variable restrictions (2.4). Hence it is not  possible to relate control  
variable variations and state variable restrictions directly. This difficulty can be circumvented 
by taking the total time derivative of gk(t, y( t ) )  (k=  1 . . . . . .  v) and by using the relations (2.1): 

h k (t, Yo (t), Yl  (t), v o (t), v 1 (t)) dgk 
dt  

Ogk ~ ~gk 

Ot + 2.. = - -  ~d..if (t, yo(t),  y l ( t ) ,  Vo(t), v l ( t ) ) ,  ( k =  1 . . . . .  v) .  (3.1) i "  

i = l  tJy 

The corresponding restrictions (2.4) are:  

i t  (s, y0(s), y, (s), Vo (s), v, ( s ) ) = <  (k = 1, . . . ,  v). (3.2) h ~ ds 0 
to 

Now a relationship between control  variables and state variable restrictions has been in t roduced 
it is possible to consider all restrictions (see (2.5)) as auxi l iary control variables: 

This is made explicit by the following definition of the new controls  t/~ . . . .  , r/~'" 

tlJo § hJ = O , j 

rlJo + ~ § c~ J = O , j 

tlJo = v j , j 

It is supposed that  the Jacobian 

O(h a . . . . .  hV; q~, . . . . .  q~r) 
. . . . .  

17 . . . ,  V , 

= 1, ..., r ,  

= v + r + l ,  ..., m ,  

for all t ~ A z, 1 ~ l ~ A . (3.3) 
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has rank v + r on every interval A~ and furthermore that  the components  v 1 . . . . .  v m have been 
arranged in such a way that 

c~(h a . . . . .  h~; q51 . . . . .  ~b ~) 
. . . .  +r)  

is nonsingular. Then the relations (3.3) can be inverted: 

v~. = v~. (t, Yo, Ya, r/o, v~), j = 1 . . . . .  v + r ; (3.4) 
v~ = t/~, j = v + r + l  . . . . .  m.  

Let us consider the first v + r relations more closely. 
By definition, 

vi (t) = ( t -  y0 ( t -  ( t -  ( t -  ( t -  = 
= rio(t--'C, y l ( t ) ,  y2(t), ~/1 (t), v2(t)) ; 

whereas 

v~ (t) = v~ ( t -  2z, Yo ( t -  2z), Yl ( t -  2z), t/o ( t -  2z), v 1 ( t -  2z)) = 

= v~ ( t - 2 z ,  y2 (t), y3 (t), ~/2 (t), v3(t)), 

and so on, until we arrive at the initial functions 

c~i(t) ( i=  1 . . . . .  n) and flJ(t) ( j =  1 . . . . .  m ) ,  t e [ T o - z  , To]. 

Therefore the functions v~ in (3.4) may  be considered as functions of t, t - z ,  t - 2 r  . . . .  ; Y0 (t), 
Yl (t), Yz (t) . . . .  ; I/o (t), ~/1 (t), . . . ,  the number  of which depends on the position t in the interval 
[T  o, TI]. Hence we may write the relations (3.4) in the form 

VJO ---- V j ( to ,  t , ,  . . .  ; YO,  Y l  . . . .  ; t lo , t] l  . . . .  ) ,  j = 1 . . . . .  m ,  (3.5) 

regardless the special form of these relationships for 

j = v + r +  l . . . . .  m .  

Substituting the relations (3.5) we define: 

Q ( t o ,  t l ,  . . .  ; y o ,  y l  . . . .  ; t lo , r l l  . . . .  ) = V ( t ,  y o ,  Y l ,  VO, Vl) ; 

qi(to, t l ,  . . .  ; YO, Yl . . . .  ; tlo, rl, . . . .  ) = f i (  t, Yo, Y~, Vo, V,), i =  1 . . . .  , n ; (3.6) 

for all t~A~, 1 < l _ < 2 .  

The  problem stated in sect ion 2 can now be re formulated as fo l lows.  
Determine the continuous solutions y~ ( i= 1 . . . . .  n) of 

dyg 
= qi(to, tl  . . . .  ; Yo, Yl . . . .  ; rio, ql  . . . .  ) 

dt  

i - - 1  . . . .  , n , To < t < T 1 ; (3.7) 

y l o ( t ) = a i ( t ) ,  i = l , . . . , n ,  T o - - Z < t < _  To ; 

qJo( t )=f lJ ( t ) ,  j = l , . . . , m ,  T o - z < _ t < _  To,  

which for properly chosen q0, r/1 . . . .  satisfy the end point condition y(T1)= Y1 and which 
minimize the integral 

f rl Q(to, t l  . . . .  ; YO, Yl . . . .  ; r/O, ~/1, . . . ) d t  
To 

subject to the restrictions 

f ' tlkods 0 ,  k =  1, (see (3.2)) > v 
To 

t/~ +j_>- 0 ,  j = 1, . . . ,  r (from (2.3)). 
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Moreover, since g j should be nonpositive on the entire interval [To, T1] any variation 

(t) 
of the optimal control (i.e. a control corresponding to an extremal y(t))  has to satisfy the in- 
equality restrictions which result from 

i t . . . .  , f l ,  t E [ r o ,  r l ]  ; (3 .10)  8hJ ds < O , 
To 

i.e., when t~A~: 

j .t J . . . . .  # (3.11) 8tl~ ds >__0, 1 
To 

(# is the number of active state restrictions). 
From now on suppose that y(t) is an extremal and that yl(t) . . . .  ; Vo(t), vl(t)  . . . .  and/or 

t/o (t), r h (t) . . . .  are the corresponding "optimal" functions. The integral (2.2) along an extremal 
y will be denoted by J [y]. A variation fit/o (t) of the optimal control function t/(t) will be called 
admissible if the following conditions are satisfied : 

(a) 5t lJ( t )=O, j = l  . . . . .  m ,  T o-z<<_t< To ; 
(b) 6y i ( t ) = O ,  i = l  . . . . .  n ,  T o - z < t < _ T  O ; 
(c) 6yl (t) is piecewise smooth and uniformly small on 

T o < t < T 1 ,  i = l , . . . , n ,  

i.e. for any prescribed e >0, [@i(t)[ < e, i=  1 . . . . .  n, T o < t <  T1 (terms of order O(e 2) will 
be neglected); 

(d) The restrictions 

qSJ < 0,  j = 1, . . . , r ,  

g k < = o ,  k = l , . . , , v  

are satisfied by the varied variables; 

Y o + @ o ,  Y l + S Y l  , Vo+6Vo, vl +fVx , 

the variations 8yo, 6yl, 8v o and 6Vl being caused by the variation 6qo. 
In the next section an analysis will be given of the influence of admissible variations of r/o 

upon the integral (3.8) in which y(t) is supposed to be an extremal of the problem. 

4. The influence of admissible variations; the adjoint equations 

As mentioned in the preceding section it is supposed that y(t) is an extremal of the problem 
(3.7)-(3.12) which means that 

l F' J[Y]  = Q(to, tl . . . .  ; Yo, Yl . . . .  ; r/o, r/1 . . . .  )dt  
To 

is a minimum value. With respect to local (uniformly small) variations of the state variable 
y(t) induced by an admissible variation 6r/u it follows that the variation D of the integral is 

j 'T1 
D = 6 Q(to, tl, ... ; yo, yx . . . .  ; tlo, r h . . . .  )dt  = 

To 

= Q(to, t 1 . . . .  ; yo+6yo ,  y l + @ l  . . . .  ; t/o + 6t/o, r/1 + r . . . .  ) -  
To 

- -  Q(to, tl . . . .  ; Yo, Yl . . . .  ; tlo, ql . . . .  )dt  >= O .  (4.1) 

In [2] it is shown that, neglecting 0 (e2)-terms, we have 
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f 
Tl 

D = {Q(to, t a . . . .  ; y o + b y o ,  y l + 3 y ~  . . . .  ; r/o + fit/o, r/a + fir/1 . . . .  ) -  
To 

-- Q(to, tl  . . . .  ; y o + b y o ,  ya + b y l  . . . .  ; r/o, r/~ . . . .  ) } d t  + 

+ ~ (r l - i~ ~ 3Q [t+iz]~Syjo(t)d t (4.2) 
i = 0  ,~To j = l  ~ 

We now introduce, formally, n continuous functions on [To, T1] :pl (t), ..., p"(t) which are 
supposed to be continuously differentiable on (T o, T1), possibly with the exception of corner 
points zl (1 < l<  2), the boundary  points of the subintervals A l. This will be done by adding to 
the last term in (4.2) a sum of integrals of O=d/dt(p~6y~o)-pi6f;~o-DJg)yJo=d/dt(pJc~y~o)- 
[f lby~o-pibqJ with 6q j evaluated with respect to by k (Here, pJ is still undefined). 

By standard methods (see [2], [8], [11]) this leads to 

"r,-it O Q [ t + i z ]  6yJo(t)dt = p i6y  - 

i = o  TO ~=~ Oy~ j =  1 " T o  

-- . [fl(t)bYJ~ - lf l(t){qJ(to, tl  . . . .  ; yo+bYo . . . .  ; t/o + cSt/o . . . .  ) - 
To j = l  j = l  

-- qJ(to, t~, ... ; yo+bYo ,  ... ; tlo, th . . . .  ) } d t  + 

+ f T:" { i 
,=o - to j=a k=, b-yS/. [ t + i z ]  + ~ . 

Substitution of this into (4.2) yields 

/ I T 1  D {Q(to, tl . . . .  ; y o + b Y o  . . . .  ; rlo+btlo, . . .) - 
To 

- Q ( t o ,  tx . . . .  ; y o + b Y o  . . . .  ; r/o, r h ,  . . . ) } d t  - 

-- pi(t) {qJ(to, t~ . . . .  ; y o + 6 y  o . . . .  ; t/o +br/o . . . .  ) - 
TO j =  1 

-- qJ(t o, t I . . . .  ; y o + b y  o . . . .  ; tl o, tl 1 . . . .  ) } d t  + 

+ pJ(t)byJo(t -b ~ f ~ OQ [t+iz]byjo(t ) _ 
j = l  To i = 0 7  To j = l  

- ~ p J ( t + i z ) ~  Oqj )] fT~ [ t+iz]byko( t  dt - ~ [~J(t)6yio(t)dt. (4.3) 
k = l  To j = l  

Due to the fact that all functions are by definition identically zero for t > T~, the last integrals 
may formally be rewritten as follows (replacing T 1 - i z  by T1): 

t 1 0y I [ t + i z ]  byJo(t)dt -- 
i = 0  j = l  k = l  

�9 T j = l  �9 To j = l  ~Y~ 

- -  k = l  ~ pk(t + i'c) Oy{ Oak I t  + iz] } -- }J(t)] byJo(t)dt,  

where the summation over i is extended, in fact, to those value of i for which t + iz < TI. Since 
the number  of summands obviously depends on t e [ T  o, T1], the limits of summation are 
omitted. 

We now define the funct ions  pi ( t) (j = 1 . . . .  , n) as solutions o f  the fol lowing differential equations: 
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~i { OQ [ t - t - i v ] -  ~ pk(t+iz) Oqk } pJ(t) : " ~ k : l  ~ I t+iv]  ; j = 1, ..., n,  (4.4) 

re(To, T1), 

except possibly for "corner points" (of fi(t)), i.e. points where the derivatives in the right-hand 
side show jumps and points T1 - i~, where the number  of summands  is altered. In these points 
the solutions are matched in order to define them as continuous functions. 

We shall call the equations (3.7) and (4.4) adjoint equations ; the variables if(t) ( j=  1, ..., n) 
will be called adjoint variables. They are solutions of a linear first-order system which is an 
ordinary (i.e. non-delayed) system on the interval (T~ - z ,  T1). It suffices, therefore, to specify the 
values of if(t) ( j=  1, ..., n) at t =  T1, as will be done as follows. 

With the foregoing definition of if(t)  ( j =  1 . . . . .  n) all terms in (4.3) except for the first two 
integrals drop out and defining 

K(to, t~ . . . .  ; Yo, Yl . . . .  ; t/o, th . . . .  ; P ) = - Q ( t o ,  tl, ... ; yo, yl  . . . .  ; t/o,t/1 . . . .  ) + 

+ ~ p~(t)qJ(to, tl . . . .  ; yo, y~ . . . .  ; t/o, th . . . .  ) ; (4.5) 
j = l  

#(T1)6y~(TI) = dJ(T~, Y~) .~ M (4.6) 
j = l  

we arrive at the inequality 

f T' D = [ - K ( t o ,  tl . . . .  ;yo+byo,  y l + @ D . . .  ; qo+bqo, t /1+bql  . . . .  ;P) + 
To 

+ K(to, t a . . . .  ;yo+Syo, Y l + @ l  . . . .  ; t/o, t/1 . . . .  ;p)]dt+bJ[Y1]>=O. (4.7) 

We shall call 

H(t, yo(t), yx(t), Vo(t), vl (t); p(t)) = K(to, t 1 . . . .  ; Yo, Yl . . . .  ; rlo, 171 . . . .  ; P) 

the Hamiltonian function or shortly Hamiltonian of the problem. Using this function the 
equations (4.4) can be written in the comprehensive form 

0K 
/~ I t +  iz] j = 1, n (4.8) : -  a y l  

Obviously, since D is the difference between the integrals along an (arbitrarily but admissibly) 
varied curve and an extremal from (T 0, Yo) to (T1, Y1) whereas 5J is the difference between the 
integrals along two extremals we have the inequality 

D > bJ [Y1] 

and consequently (4.7) reduces to 

fT,  [ - -K( to ,  t l  . . . .  , Yo+6Yo, Yl+OYo . . . .  ; t/0 Avt~qO, t/1-~-t~t/1 . . . .  ; P) 
To 

+K(to, t l , . . .  ;Yo+@o, Y l + @ l  . . . .  ;qo, th . . . .  ; p ) ] d t > O  (4.9) 

for all admissible variations 6t/o. 
In the next section a maximum principle will be derived from this inequality by the choice of 

a special admissible variation. 

5. The maximum principle 

In this section an inequality will be given which exgresses that  for an extremat of the problem 
(3.7)-(3.12) the Hamil tonian K(t  o, tl, ... ;Yo, Yl,--. ;t/o, r / l ; - . .  ;P) is, in a certain sense, 
"maximal" with respect to the control variables t/o, t/1 . . . . .  This maximum principle is the 
most important  result of the present investigation since all other necessary conditions are 
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easily obta ined from it. More  familiar  forms of the m a x i m u m  principle will be given in section 6. 
Our  m a x i m u m  principle is a general izat ion of the wel l -known Pont ryag in  m a x i m u m  principle. 

In  fact, when there are no delays involved in the problem,  our  result is exactly the m a x i m u m  
principle with mixed restrictions as derived by No t t ro t  [8]. 

The  start ing point  of the considerat ions is the inequali ty (4.9) which holds for all admissible 
var ia t ions 6qo, i.e. var ia t ions for which, a m o n g  others, the inequality (3.11): 

f t 3tlJods >= 0 (j = 1 it) 
To 

should hold for all t ~ [ T  o, T~]. 
In [2] it has been shown that  using the par t icular  var ia t ion 

3r/~ (t) = 0 ,  j = 1 . . . . .  m ,  outside [a  t_a - 3, or/_1 + 3] and [ a t -  3, cr t + 6 ] ,  which 

are intervals in A t ; 

/ ~J > 0 ,  j 

01d,  d > 0 ,  j 

3r/~ (t) = e j > 0 ,  j ( a t - i  - -  3 ~ t ~ (7 t _ l  Ar 3)  ; 

] 0 2 g J, E j > O, j 
t ~ J  , j 

03eJ, (5.1) 

04 E j , 

3,7 (t) - 0 ,  ( o l -  3 _< t _< + 3) ; 

O, 

O, 
where for reasons of admissibil i ty (see (3.11)) 

- - 1 < 0 3 - - < ' 0  ; 

- - 1 < 0 4 < 0  if 0 ~ = 1  ; 

- - 1 < 0 1 < 0  if 0 4 = 1 ,  

and where 02 = _+ 1, (4.9) can be conver ted into the following pointwise form : 

~ K (t- i ,  t - i+ l, ... ; Y - i ,  Y-~+ I . . . .  ; r / - i , t / -~+l ,  . . - ; P - O ] ,  . . . . .  + 
i 

+ ~ K ( t - i , t  i+1 . . . .  ; Y - i , Y - i + l  . . . .  ; r / - i , q - i + l , . . - ; P - * ) l t  . . . .  > 
i 

>= ~ K( t_~, t_ ,+ l . . . .  ; Y- i ,  Y-~+I . . . .  ; ~/_,+3r/_,,t/_~+~ +3~/_~+~,.. .  ; P-~)I,=~,_, + 
i 

+ ~ K ( t _ i , t _ ~ + ~  . . . .  ;Y -~ ,Y-~+I  . . . .  ; q - ~ + 3 q - ~ , t / - , + l + 3 t /  ~+1 . . . .  ;P- , ) [ ,  . . . .  (5.2) 
i 

where y_ ~, y_ i + 1 . . . .  ; ~/_ ~, t/_ ~ + 1, --- denote  the "op t imal"  variables, and where &7 - ~ + j --- 0 for 
i r  We conclude that  the inequali ty (5.2) expresses a m a x i m u m  principle for p rob lem 
(3.7)-(3.12): with respect to admissible variations (which satisfy (3.11) for  1 < j <  # and decrease 
h j for  # + 1 < j < v) o f  the control variables t/~ (j = 1, ..., m) the Hamiltonian is maximal for  the 
"optimal" control tlo in the sense o f  (5.2). 

In the next section the inequali ty (5.2) will be re t ranslated in terms of the original control  
variables vo, v 1 with regard to the absence or presence of restrictions. 

= 1  . . . . .  # ;  

= # + 1 ,  ..., v ; 

= v + l , . . . , v + q  ; 

= v + q + l , . . . , v + r  ; 

= v + r + l , . . . , m  ; 

j = 1 . . . . .  #, d as above  ; 

j = # + l , . . . , v , e  j a s a b o v e  ; 

j = v + l , . . . , v + q  ; 

j = v + q + l  . . . . .  v + r  ; 

j = v + r + l  . . . . .  m ; 

6. Reformulation of the maximum principle 

If  there are no restrictions then (3.3) reduces to 
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v~ = t/O, k = 1,. . . ,  m ; 

in other words, there is no need to introduce new control variables. 
Consequently, in the notation used thus far, 

H(t,  Yo, Yl, Vo, v~ ; p) = K( t  o, Y0, Yl, t/o, t/1 ; P). 

In this case 

H(t,  Yo, Yl, Vo, v l ;  p ) + H ( t + z ,  Yo, Yl, Vo, vl ; p) > 

>= H (t, Yo, Ya, Vo + bVo, vl ; p)+ H (t + z, Yo, Y~, Vo, vl + bvl ; P) , 

To <= t<_ - T l - z  ; (6.1) 

H(t, Yo, Yl, Vo, Vl ; P) ~ H(t,  Yo, Yl, Vo+bVo, Vl ; P), T, - z  < t < T 1 . (6.2) 

In words : 
if there are no restrictions, the optimal control (corresponding to the extremal under consider- 

ation) maximises the Uamiltonian in the sense of  (6.1), (6.2). 
In the presence of restrictions one has to consider formula (5.2) very carefully. Skipping 

tedious considerations we only mention that in this case too (6.1), (6.2) remain valid, but in the 
sense that : 

within the region, given by the restrictions ~k ~ O, k =  1 . . . . .  r and g J< 0 , j =  1 . . . . .  v, the optimal 
control variables maximize the Hamiltonian in the sense of  (6.1), (6.2) for admissible variations 
which decrease h ~, l < j <  v at t, and at t + z if  t<  T l -  z. 

The inequalities (6.1) and (6.2) hold on intervals where the set of active restrictions does not 
alter. In the partitioning points z~ (l = 0, ..., 2) and the points zl_+ z the control variables may 
show a jump (see example 1 of [2], Chapter VI, where V=Vo shows a jump in t =  i). 

Although the maximum principle in the form of the inequalities (6.1), (6.2) is of more practical 
importance than the ineciuality (5.2), the latter will prove to be of more value for further con- 
siderations. In section 7 Lagrange multipliers will be defined using derivatives of the Hamiltonian 
K with respect to the control variables t/0, t/1 . . . . .  Then the analogues of the "classic" necessary 
conditions are easily obtained from the maximum principle (5.2). 

7. Necessary conditions 

Besides the more familiar forms of the maximum principle as derived in section 6, it is possible 
to get more information from the inequality (5.2) in the form of necessary conditions for the 
optimal variables. 

In this section we shall give some differential equations for the so-called Lagrangian of the 
system, defined by 

L(t, Yo, Yl, Vo, vl ; P) = H(t,  Yo, Yl, Vo, vl ; p) + 

+ ~ cd(t)hJ(t, yo, yl ,  vo, Va)+ ~, 2k(t)~)k(t, yo, Yl, VO, Vl). (7.1) 
j = l  k = l  

Again only the main results are mentioned; the rather substantial derivations have been 
omitted (see [-2] for details). 

We define the functions ~1, ..., ~u of t ~A  1 by 

OK ~J(t) = ~.--Oq{ [ t + i z ] ,  j = 1, ..., # (7.2) 

It then appears that the functions ~ are non-decreasing and non positive on A1, J= 1, . . . ,  #. 
Similarly, defining 

~J(t) = ~"--~?t/IOK [ t+i z ]  , j = # +  1, ..., v , (7.3) 
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it appears that the functions cd (j = # + 1 . . . . .  v) are nonpositive constants on A t. 
Define furthermore 

0K 
2J-v(t) = ~i--Otl~ [ t + i z ] ,  j =  v + l ,  ..., v + q ,  (7.4) 

then one can show that the functions 2 j U =  1, ..., q) are nonpositive on A t. Taking the same 
definition for 2 J- v (t), j = v + q + 1 . . . . .  v + r, it fol lows that these are identically zero on A t- 

Remark. The functions ~1 . . . . .  E and 21, ..., 2 r defined above will appear later on to be the 
multipliers in the Langrangian defined in (7.1). Their properties given above are of practical 
importance (see also [2], chapter VI, section 3). 

Finally, the sum 

~,i OK [ t + i z ]  v + r + l  < j < m  
�9 a~{  

is zero on every interval At. 

The results obtained so far will be combined in the following way. Let 1 be an integer between 
1 and m, not to be mixed up with the index l used for the intervals A ~. We multiply 

0K 
~J(t+kT) [ t + ( i + k ) z ]  j =  1, v; k = 0 ,  1, - -  , . - - ,  . . .  

�9 a.l 

0t/~ [ t+  kr] and add; analogously, we multiply by 0v~ 

0K 
2J-~(t+kr) [ t § 2 4 7  j - -  v +  1, v+r"  k = O, 1, - -  ~ . . . ,  , . . .  

�9 a ~  

by 0r/~ [ t + k , ]  and add'f inally,  we multiply av~ 

~ O K [ t + ( i + k ) z ]  j = v + r + l , ,  m; k = 0 ,  1, - -  . . ,  . . .  

0r/~ [t + k~] and add. This yields 
by 0v-~- k 

[,2. o.V~ [t+k,] + 
j = l  

0K [t+(i+k)q_~;_~(t+k,) E + 2 E 
j = v + l  

Eli2 OK [t+(i+k)r]l 0r/~ [t +k'c] = 0.  (7.5) 
j = v + r +  l 

Rearranging terms and considering the nature of the delayed arguments very closely it is 
possible to conclude from (7.5) that, in terms of the original control variables, 

0L 0L I t + z ]  = 0,  l = 1, m; T O < t < TI-'C " (7.6) ovl, [t] + o v - ~ - i  . . . . .  

OL 
Ov~ It] = 0 ,  l =  1,..., m; T , - ~  < t < T,.  (7.7) 
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These two equations are the first necessary condit ions derived from the max imum principle. 
Since ((7.1)) 

L = - F + E  pJfJ+ 2~ o~JhJ-t- 2~ 2Jcp j (7.8) 

we have fur thermore  
OL 

.9io = f J  - @ j ,  j = 1 . . . . .  n .  (7.8a) 

In [2] we derived a canonical  counterpar t  of this equat ion in the form 

0L __0L [ t + z ] = - # J ( t ) ,  j = l , . . . , n ; T  o < t < T  l - z , "  (7.9) ay~o [ t ]  + ay{ 

aL 
0y~ [t] -/~J(t), k 1, ..., n; r , - z  < t < T 1 . (7.10) 

These are the equat ions which, together  with (7.8), form a canonical  system. They  can serve 
to compute  the adjoint  variables. Under  the condit ions imposed the solutions of these equat ions 
are cont inuous functions on [To, 7"1]. 

Collecting all conditions to be satisfied by the opt imal  variables we obtain the following list 
(corner points of state- and adjoint  variables have to be excluded). 

aL aL [ t+~]  = 0 

OL 
I t ]  = o ,  

OL 3)~(t) = f t  [ t ]  = ~ [ t ] ,  

yo(t) = o~(t), vo(t ) = fl(t) , 

aL aL [ t + q  = -?(t) ayg [t] + ay-~-1 

OL 
ayg [t ]  = -pi(t), 

O n  every interval A t (1 < l <  2):  

l = 1  . . . . .  m; T o < t < T x - z  ; 

1 = 1  . . . .  ,m ;  T I - * < t < T I  ; 

i = 1  . . . . .  n; T o < t < T  1 ; [ 

/ t -  < To; y o ( r l )  = g x *  ; 

i = 1  . . . . .  n; T o < t < T l - Z ;  I 

/ i = l  . . . . .  n; T x - z < t < T  1 ; 

gJ = 0 } 

eJ < 0 and nondecreasing j = 1 . . . . .  p ; 

gJ < 0  

~J < 0 and constant  
j = p + l  . . . . .  v ;  

(7.11) 

(7.12) 

(7.13) 

(7.14) 

0 j )  = 1 ,  . ,q  ; 
2 J < 0  ) 

- (7 .15)  
q~J < 0 } j  
2 j = 0 = q + l  . . . . .  r 

The  optimal quantities v~, v~, y~, y~, if, aJ and 2 j satisfy, by definition, the equat ions (7.14)-(7.15) 
and the max imum principle given in section 6. 

* In practice this condition may be used as an end condition for the equations (7.13). 
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Remark .  It  can be deduced f rom the derivat ions of  these results that  the theory can immediate ly  
be extended to p rob lems  involving variables with lags of the type ~, 2z, 3z . . . . .  

R e m a r k  2. The 

~J(t) gJ(t) 

2J(t)~gJ(t) 

and 

__< o ,  

=< 0 ,  

condit ions (7.14) m a y  be put  in the form 

= 0 ,  j = l  . . . . .  v, T o < = t < T  ~ ; 

= 0 ,  j = l  . . . . .  r, To < t<= T 1. 

j = l  . . . .  , v ,  To<=t<=T 1 ; 

j = l  . . . . .  r, To<=t<=T 1.  

R e m a r k  3. In [2],  extensions to the H a m i l t o n - J a c o b i  equat ion and variable end point  
p rob lems  are considered. In part icular ,  t ransversal i ty  condit ions are given for free end point  
p rob lems  with delay. 

Moreover ,  examples  are worked  out in detail. 

8. Conclusions 

For  op t imal  control  p rob lems  involving state- and control  restrictions and  t ime delay, necessary 
condit ions for opt imal i ty  can be derived f rom the m a x i m u m  principle. This requires a careful 
analysis of  the nature  of the delayed arguments .  Moreover ,  a part icular  choice of  admissible 
var ia t ions  of  the control  variables  is needed to obta in  the maximum-pr inc ip le  in pointwise 
form. F r o m  this, however,  s t ra ight-forward analysis leads to a mult ipl ier  rule for the present  
type of control  problems.  The  theory  given can easily be extended to related problems,  e.g. to 
free end point  problems,  as given in ref. [-2]. 
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