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SUMMARY :

In this paper we consider a rather general optimal control problem involving ordinary differential equations with
delayed arguments and a set of equality and inequality restrictions on state- and control variables. For this problem
a maximum principle is given in pointwise form, using variational techniques. From this maximum principle necessary
conditions are derived, as well as a Lagrange-like multiplier rule. Details may be found in ref. [2], together with
extensions to the Hamilton—Jacobi equation and free end point problems.

1. Introduction

Recently the theory of optimal control problems has been developed into several directions.
Concerning problems in which a given integral has to be minimized under restrictions
((in-)equality restrictions and differential equations) the introduction of delays in the inde-
pendent variable can be mentioned, as well as the generalization to restrictions on both the
state- and control variables.

Among others, Halanay [ 3], Hughes [6], [ 7] Pontryagin [9] and Sabbagh [10] have treated
variational and optimal control problems with delays. On the other hand, Timman [11] and
Nottrot [8], developed methods to treat problems with inequality restrictions on the state-
and control variables.

The scope of this paper is to bridge both developments in a theory in which state variables
and control variables are subjected to restrictions and in which a single constant delay occurs.
The treatment of the inequality restrictions is in many respects similar to that given by Nottrot.
The occurrence of a delay however requires nontrivial modifications. It should be mentioned
that the results of these chapters include those for problems without delays.

In this paper the maximum principle is derived for optimal control problems of a general
(nonlinear) structure, involving a single time delay t in both the state- and control variables
and with restrictions on both types of variables. This maximum principle furnishes a starting
point for the derivation of necessary conditions.

It is worth while to note that the restriction to one constant delay is not very essential and
facilitates the reading considerably. It is not difficult to generalize the results obtained in this
paper to problems which include:

— delays which are multiples of t, i.e. problems which involve arguments ¢, t —1, t— 21, etc.;
— one nonconstant delay 7 (y(t), t) depending on the state y(t) of the system and on ¢; see

e.g. Asher and Sebesta [1].

Moreover, an arbitrary number of nonconstant delays can be considered in the problem
statement, as Halanay did in [3]. The restriction to one constant delay, however, will furnish
essential information about the structure of the difficulties to be encountered in any general-
ization.

2. Statement of the problem

In the following ¢ will indicate an independent variable (“time”), y is a vector valued function
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y' (i=1, ..., n) are called the state variables and v is the vector valued function
vl
v={ ),
vm
F k=1, ..., m) are called the control variables.
Let [T;, T;] be a time interval and 7 a positive number less than T, — 7. Suppose that
a'(i=1,...,n)and B (k=1, ..., m) are given functions on [T, —1, Ty ], which are at least twice

piecewise continuously differentiable; y and v are defined on [T, —<, T{].
Consider those continuous solutions y=(y?, ..., y") of the initial value problem

iyj = fi(t, y(t), y(t=1), v(1), v(t—7)), i=1..,n,

dt

To<t<T;

Vi) = o' (1), i=1,.,n T,—t<t<T,;

(1) = B*(2), k=1,...m Th—-t<t< T,
which for properly chosen v', ..., v™ satisfy the fixed end point condition y(T})= Y, and which
minimize the integral

2.1)

Tl
jr F(t, y(1), y(t—1), v(t), v(t—1))dt (2.2)
subject to the restrictions
dI(t, y(1), y(t—1), v(t), v(t—7)) =0, j=1,..,r (2.3)
(which are regarded as restrictions on the control variables) and
gt y@®)<0, k=1,..,v, (2.9)

the state variables restrictions.

Such solutions will be called extremals. It is assumed that at least one extremal exists con-
necting the points Y, =y(T;)=a(T;) and Y,. We assume that v+r< m*. -

It is supposed that f*, F, ¢/ and g* are piecewise continuous functions of all arguments and
that these functions have piecewise continuous partial derivatives of first and second order
with respect to their 2nd, 3rd, 4 th and 5th arguments (which is sufficient for our purposes);
moreover dg¥/dt (k=1, ..., v) are supposed to be piecewise continuous too.

In general the control variables may have jump discontinuities at a number of points in the
interval (T;, T;). These discontinuities will cause so-called “corner points”, i.e. points at which
the derivatives of the (continuous) state variables show a jump.

Even if not stated explicitly any relation involving derivatives which is considered in the
sequel is understood to be considered in (open) intervals in [ 7;, T;] not containing corner
points 1n its interior.

When dealing with retarded or advanced arguments we use the following notations

L=t—it, i=0,+1,+2...;
yilt) = y(t:) = y(t—it), so y_;(t) = y(t_)) = y(t+i7),

v;(t) = v(t;) = v(t—it), etc.

* This assumption may be weakened if there are control restrictions which do not explicitly depend on y(t) and

y(t—7).
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With respect to such arguments we define every function of t to be identically zero outside
[ To, Ty]unless specified otherwise (asin the case of y(t)and v(t), which are defined on [ Ty — 7, T, ]
by (2.1)).

For specified values of its arguments a restriction is called active on some open subinterval of
[T, T, ] if the equality sign holds on this subinterval.

Suppose that the interval [Ty, T; ] can be partitioned into a finite number of subintervals
Ay=[7,_, ) (I=1, ..., ) with Ty =1,, T, =1,, such that on every interval 4, certain restrictions
are active, whereas the other restrictions are not. Let

¢7(t, yo(0), y1 (D), vo (), 0, () =0, j=1,...,q (g<m);
¢I(t, yo(®), y () o8 v1() <0, j =q+1, S 23
gk (¢, yo(t)) = k=1,..., u;

g (t, yo (1) < k=pu+1,...,v

on some interval A,; clearly g and u depend on L

We assume every interval 4, to be of length less than 7. This is a rather formal assumption
since it can easily be satisfied by choosing “dummy” partitioning points.

The active restrictions play an important role in the present theory since a variation of any
of the arguments should not cause the restriction functions to become positive.

3. Reformulation of the problem

In the calculus of variations, necessary conditions for minimization problems are derived by
considering variations of the state variables. In optimal control problems however, these
variations are due to variations of the control variables. The latter variations should be chosen
in such a way that the restrictions—especially the active ones—are not violated. Now the
control variables (and hence its variations) occur explicitly in the control variable restrictions
(2.3) but not in the state variable restrictions (2.4). Hence it is not possible to relate control
variable variations and state variable restrictions directly. This difficulty can be circumvented
by taking the total time derivative of g*(, y(t)) (k=1, ..., v) and by using the relations (2.1):
k
(6 30(0) 1 0), v (0 04 (0) = 29 =

=Tt 3 00005 0) (=1 (1)

The corresponding restrictions (2.4) are:

[ 15306 316 0008 w5 20 (=1, 0). (3.2)

o
Now a relationship between control variables and state variable restrictions has been introduced

it is possible to consider all restrictions (see (2.5)) as auxiliary control variables.
This is made explicit by the following definition of the new controls %3, ..., #%:

m+hi=0, j=1,..,v
it +ei=0, j=1,..,r, forallted,, 1<I<A. (3.3)
nh=1vs, j=v+r+1,...,m,

It is supposed that the Jacobian

o(hY, .., s L., @)
(055 ..., VG)
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has rank v+r on every interval 4, and furthermore that the components v’, ..., v™ have been
arranged in such a way that

(L, .. 1 L, .., ¢)

005 - 031")
is nonsingular. Then the relations (3.3) can be inverted:

U(};= U(};(t, yO’ y17 ’709 vl)> ]= 19 ...,v+r 9

vb=nj, j=verelm.

(3.4)
Let us consider the first v+r relations more closely.
By definition,

U{ (t) = v(j) (t—‘t, J’O(t"f)’ Y1 (t_T)’ ”O(t—f)s Uy (t—T)) =
= v (t—7, y1(t), y2(t), 11 (1), 02 (1))

and so on, until we arrive at the initial functions

) i=1,...,n) and Bi(t) j=1,...m), te[Ty—r, Tp] .
Therefore the functions vj in (3.4) may be considered as functions of ¢, t—1, t— 21, ... ; y, (),
y1(2), y2(8), ... 5 110(2), 11 (2), ... , the number of which depends on the position ¢ in the interval
[To, T;]. Hence we may write the relations (3.4) in the form

0h = 0] (Eos t1s -+ 3 Voo Vis oo 3Hos 1y ---)s  j=1,..,m, (3.5
regardless the special form of these relationships for

j=v+r+1,...,m.
Substituting the relations (3.5) we define:

Q(tos tys v 3 Yos Vis -o- 3 Hos 15 ---) = F (&, Yo, V15 Vo, V1)
G (E0s L1s -+ 3 Yoo Vis o= 3 M0s M1s o) =S (& Yos V15 Vo» U1) 5 i=1,..,n; (3.6)
forallted,, 1<1< 4.

The problem stated in section 2 can now be reformulated as follows.
Determine the continuous solutions y;, (i=1, ..., n) of

= qi(to, tl’ cov 2 Yoo Y15 -0 s Nos M1 )

. , (3.7)
H=d@, i=1,.,n, Th—12tTy;

)
@) =p0), j=1,...m, Th—1<t<T,

which for properly chosen 74,7, ... satisfy the end point condition y(7T;)=Y; and which
minimize the integral

T

jT Q(tO, tla--- ;y07y1’~- §770a771a---)dt (38)
subject to the restrictions

t
J nekds=0, k=1,..,v (see (3.2))

Mo ]go, 7 =1,...,r (from (23))
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Moreover, since g’ should be nonpositive on the entire interval [Ty, T, ] any variation
on (1)

of the optimal control (i.e. a control corresponding to an extremal y(f)) has to satisfy the in-
equality restrictions which result from

t
jéhfdsgo, j=1.u, te[To T,] ; (3.10)
To
ie., when te A;:
"t
j ondds20,  j=1..,u (3.11)
To

(u is the number of active state restrictions).

From now on suppose that y(t) is an extremal and that y,(¢), ... ; vo(t), v1(t), ... and/or
1o(t), 71 (¢), ... are the corresponding “optimal” functions. The integral (2.2) along an extremal
y will be denoted by J[ y]. A variation dn, (t) of the optimal control function 5(t) will be called
admissible if the following conditions are satisfied :

(@) dni)=0, j=1...m, Th—1<t<Ty;

(b) 8y () =0, i=1,..,n, T,—t<t<T,;

(¢) 8y' (1) is piecewise smooth and uniformly small on

T,<t= T, i=1,..,n,

ie. for any prescribed ¢ >0, |8y (¢)| <¢, i=1, ..., n, Ty<t< T, (terms of order O(g?) will
be neglected);
(d) The restrictions

¢pi<0, j=1,..,r,

g <0, k=1,..,v

are satisfied by the varied variables;
Yot 0yo, Y1+0y1, vo+dvy, vy+d0y,

the variations dy,, dy,, v, and dv, being caused by the variation &z,
In the next section an analysis will be given of the influence of admissible variations of #,
upon the integral (3.8) in which y(¢) is supposed to be an extremal of the problem.

4. The influence of admissible variations; the adjoint equations

As mentioned in the preceding section it is supposed that y(¢) is an extremal of the problem
(3.7)—(3.12) which means that

Ty
J[y] = gT Q(t07 tla e ;y05 yla cer s ’707 ’713 )dt
4]
is a minimum value. With respect to local (uniformly small) variations of the state variable
y(?) induced by an admissible variation &7, it follows that the variation D of the integral is
T,

D=4 j Oftos t1r - 3 Yor V15 --+ 3 Hos N1, ---) At =

To

T
= j Qto, tys v 5 Yo+ Yo, Vi +0y1, oo 5 o+, py+01,, ...) —

To
- Q(th tl’ J,VO,,VD ;’70, 7717 )dtg(). (41)

In [2] it is shown that, neglecting O (¢?)-terms, we have
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Ty
D = ST {Q(to, ty, oo 3 Yo+ 0Y0, Y1 +0¥1, . i Mo+ 0N, 7l1+57l1a--—) -
= Qlto s, - ;yo+5yo, Yi+0yi, .o s Moo Mys o) fdt +

Ti—it n

+3 (5 el @2

To

We now introduce, forma]ly, n continuous functions on [Ty, T;]:p* (¢), ..., p"(t) which are
supposed to be continuously differentiable on (T;, T;), possibly with the exception of corner
points 7, (1 =< I< 1), the boundary points of the subintervals 4,. This will be done by adding to
the last term in (4.2) a sum of integrals of 0=d/dt(p’dy{)—p’ 6y —p’dyd=d/dt(p’Syd)—
P oy —p' g’ with 8¢’ evaluated with respect to 8y% (Here, p/ is still undefined).

By standard methods (see [2], [8], [11]) this leads to

X Ti—it n ’1 n "Tl
ZL S Soteileviod =] T pow -

i=0 j=1 A1y

— s Z pP(8) dyf(t)dt — [ Z PO {d (o t1s - 5 Yo+ Yo, ... 50+ 00, ...) —

To j=1 To j=1

— @ (tostys - 3 Yo+t OVor - 5 Moy My, )} dt +

Ty—it n

L3RS e 3

i=1

} Syd(r)de .
Substitution of this into (4.2) yields

.
D :»ST {Q(tos t1 - 5 Yo+ Yo, o 3 Mo+ 0M0, ) —
) 0
- Q(to, tis oo 3 Yo+ OVor cvn s Mo My o) pdE —

Ty
—j Z P){d (to ty, ... 5 Yot Yo, ..o s Ho+0Mg, ...) —

To j=1
— @ (tos tis - 5 Yo+ Vo5 ..o 3 Moy M1y -.n)}dE +

+ ‘Li p"(t)éyé(t)y + Z rl_h > [ZQJ [r+ie]oxd(e) -

To To j=
n Ty n
- Y pit+ir) —QE [t+it] 5y’(‘,(t)} dt — J Y, pP()oyi(r)dr. (4.3)
k=1 oy; To j=1
Due to the fact that all functions are by definition identically zero for ¢t >T,, the last integrals
may formally be rewritten as follows (replacing T, —it by T}):

K l‘; it n 'aQ n . aqk :l .
: t+it) — [t+i Sy ()dt —
D A ép(mm[n]mﬂ

_j S p0) ey dt = ‘Vl > [Z{a j

) To j=1 Jre j=1 L

. k . aqk . i j
- Y pHt+ir) 3y — p(t) |oyh(t)dt
k=1 i

where the summation over i is extended, in fact, to those value of i for which t+it < T;. Since
the number of summands obviously depends on te[ Ty, T;], the limits of summation are

omitted.
We now define the functions p'(¢) (j=1, ..., n) as solutions of the following differential equations :
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PO =2 { 2yj

a k
Z pr(t+it) z’ }; j=1,..,n, (4.4)

€ (T07 Tl) s

except possibly for “corner points” (of y(t)), i.e. points where the derivatives in the right-hand
side show jumps and points T; —it, where the number of summands is altered. In these points
the solutions are matched in order to define them as continuous functions.

We shall call the equations (3.7) and (4.4) adjoint equations ; the variables p/(¢) (j=1, ..., n)
will be called adjoint variables. They are solutions of a linear first-order system which is an
ordinary (i.e. non-delayed) system on the interval (T, —z, Ty). It suffices, therefore, to specify the
values of p/(¢) (j=1, ..., n) at t=Tj, as will be done as follows.

With the foregoing definition of p/(t) (j=1, ..., n) all terms in (4.3) except for the first two
integrals drop out and defining

K (t0s tys coe 5 Y05 V1o v 5 Moo M5 oov 5 P) =—Qtgs Ly -ov 5 Yoo Vis v 5 Hos Nps --2) +

Z ) th tl’ s Yoo Yo oo s Hos N1s ) 5 (45)

Y. P(T)oyd(Ty) = dJ(Ty, Yy) = 6J v (4.6)
j=1
we arrive at the inequality

Ty
D= L [—K (tos t1s --e 3 Yo+ 0Yos Y1 +0V1, oo 5o+ Mo, N1 +014, ... 3 P) +
1)

+ K(to, ty, - 3 Yo+0Yo, Y1 +0Y1s v 3 oy M1y - 5 P)]dt+0J Y] 2 0. (4.7)
We shall call

H{(t, yo(1), y1(2), vo(2), v1(8); p() = K(to, t1s .- 3 Yos Y1s -+ 5 Mos N1s -+ 5 P)

the Hamiltonian function or shortly Hamiltonian of the problem. Using this function the
equations (4.4) can be written in the comprehensive form

L oK . .
pt)= —zi:bj.[t-}-n], ji=1...,n. (4.8)
Obviously, since D is the difference between the integrals along an (arbitrarily but admissibly)

varied curve and an extremal from (T;, Yp) to (T}, Y;) whereas 6J is the difference between the
integrals along two extremals we have the inequality

D=6J[Y,]

and consequently (4.7) reduces to

T,
JT [—K(tos t1s - 5 Yot 06Y0, Y1+ 0V, ... 5 Mo+ 070, 114071, ... 5 p)
0

+ K (tos t1 - 5 Yo+0Yo, Y1+0Y15 oo 3o M1y - 5 p)]dt =0 (4.9)

for all admissible variations 7.
In the next section a maximum principle will be derived from this inequality by the choice of
a special admissible variation.

5. The maximum principle

In this section an inequality will be given which expresses that for an extremal of the problem
(3.7)-(3.12) the Hamiltonian K (fo, ty, ... 5 Yo» V1> --- 3 o> M1 -+~ 5 P) 1S, in a certain sense,
“maximal” with respect to the control variables 54, 74, ... . This maximum principle is the
most important result of the present investigation since all other necessary conditions are
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easily obtained from it. More familiar forms of the maximum principle will be given in section 6.
Our maximum principle is a generalization of the well-known Pontryagin maximum principle.
In fact, when there are no delays involved in the problem, our result is exactly the maximum
principle with mixed restrictions as derived by Nottrot [8].
The starting point of the considerations is the inequality (4.9) which holds for all admissible
variations 7, i.e. variations for which, among others, the inequality (3.11):

t
[ ontaszo (=1

To
should hold for all te[ Ty, T1].
In [2] it has been shown that using the particular variation

() =0, j=1,..,m, outside [o,_y—0,0,_,+06] and [¢,— 6, 06,+3], which

are intervals in 4, ;

&>0, j=1,...,u;
0,6, >0, j=u+l,..,v;

ond(t) =1¢ >0, j=v+1,..,v+q; (6,_1—0=5t<a,_1+0);
0,el, ¢/ >0, j=v+q+l,..,v+r;
¢, j=v+r+l ., m;
05¢, j=1,..,u ¢ as above ; (5.1)
0,¢, j=pu+1,...,v, & as above ;

ond(t) =40, j=v+l, .., v+q; (6,-0<t<0,+9);
0, j=v+q+l, .. v+r;
0, j=v+r+l,..,m;

where for reasons of admissibility (see (3.11))
-120,=<0;

1<0,<0if 0,=1;
1<60,<0if 0,=1,
and where #,= +1, (49) can be converted into the following pointwise form:

TRt toiry e 5 Yo Yoints e 5 Mo Minns oo 3 Poilimory
+ Z Koyt it 5 Vops YVoitts ooe s Hois it 15 oo iD= 2
= Z K(t_iptoistroe 3 Ympp Voitts oo 5 Mg TN oM iy H0M iy, - sP-)li=ar,
+ ZK(f—i, ANTETES PG UTRTONY IS - BN BTOE 3/ EFTINS s P-)li=gys 52

where y_;, ¥_iy 1 --- 3 M-1>N—i+1, --- denote the “optimal” variables, and where 6% _;, ;=0 for
i#j. We conclude that the inequality (5.2) expresses a maximum principle for problem
(3.7)—(3.12): with respect to admissible variations (which satisfy (3.11) for 1< j< u and decrease
W for u+1=<j<v) of the control variables n} (j=1, ..., m) the Hamiltonian is maximal for the
“optimal” control 1, in the sense of (5.2).

In the next section the inequality (5.2) will be retranslated in terms of the original control
variables v,, v; with regard to the absence or presence of restrictions.

6. Reformulation of the maximum principle

If there are no restrictions then (3.3) reduces to
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k k .
Up =16 » k=1,...m;

in other words, there is no need to introduce new control variables.
Consequently, in the notation used thus far,

H(t, Yos V15 Vos U1 5 P) = K(th Yo Yi: o> 13 P) -
In this case

H(ta yO, y17 UO’ Ul; p)+H(t+Ts J’o, yls UOa Ul; P) z
EH(% y05 yla U0+5U09 vl; p)+H(t+Ts J’o, yls UO, U1+5U1; P),

L St=T—7; (6.1)
H(t’y09y1’UOaUl;p)gH(t!y07y15U0+5U09U1;p)’ TI_T<t§TI' (62)
In words:

if there are no restrictions, the optimal control (corresponding to the extremal under consider-
ation) maximises the Hamiltonian in the sense of (6.1), (6.2).

In the presence of restrictions one has to consider formula (5.2) very carefully. Skipping
tedious considerations we only mention that in this case too (6.1), (6.2) remain valid, but in the
sense that:

within the region, given by the restrictions ¢*< 0, k=1, ...,rand ¢’<0,j=1, ..., v, the optimal
control variables maximize the Hamiltonian in the sense of (6.1), (6.2) for admissible variations
which decrease W, 1<j<vatt and at t+7 if t< T, —1.

The inequalities (6.1) and (6.2) hold on intervals where the set of active restrictions does not
alter. In the partitioning points 7, ({=0, ..., 2) and the points 7,4+ the control variables may
show a jump (see example 1 of [2], Chapter VI, where v=v, shows a jump in t=1).

Although the maximum principle in the form of the inequalities (6.1), (6.2) is of more practical
importance than the inequality (5.2), the latter will prove to be of more value for further con-
siderations. Insection 7 Lagrange multipliers will be defined using derivatives of the Hamiltonian
K with respect to the control variables #,, 14, ... . Then the analogues of the “classic” necessary
conditions are easily obtained from the maximum principle (5.2).

7. Necessary conditions

Besides the more familiar forms of the maximum principle as derived in section 6, it is possible
to get more information from the inequality (5.2) in the form of necessary conditions for the
optimal variables.

In this section we shall give some differential equations for the so-called Lagrangian of the
system, defined by

L(ts Yos Y1, Vg, Uy 5 p) = H(t’ Yos Y15 Vo» Uy p) +

+ Z aj(t) hj(ta y07 Y1, UO: vl) + Z 'lk(t) ¢k(t’ yO’ yla Vo, UI) . (71)
j=1 k=1
Again only the main results are mentioned; the rather substantial derivations have been
omitted (see [2] for details).
We define the functions a?, ..., a* of te 4, by

; 0K : .
W)=Y p [t+it], Jj=1,..,pu (7.2)

i

It then appears that the functions o are non-decreasing and non positive on 4,, j=1, ..., j1.
Similarly, defining

) 0K
() =) ol [t+it],  Jj=p+l,..,v, (7.3)

i
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it appears that the functions of (j=u+1, ..., v) are nonpositive constants on 4,.
Define furthermore

R

then one can show that the functions # (j=1, ..., q) are nonpositive on A,. Taking the same
definition for A/7"(t), j=v+q+1, ..., v+r, it follows that these are identically zero on 4,.

j=v+1,..,v+q, (7.4)

Remark. The functions !, ..., «" and A, ..., A" defined above will appear later on to be the
multipliers in the Langrangian defined in (7.1). Their properties given above are of practical
importance (see also [2], chapter VI, section 3).
Finally, the sum
0K
2o

is zero on every interval A,.

v+r+1<j<m,

The results obtained so far will be combined in the following way. Let [ be an integer between
1 and m, not to be mixed up with the index ! used for the intervals 4,. We multiply

o (t+kt) = ZZ ]

((+k)t], Jj=1,..,v;k=0,1,...

oni
by 5%9 [t+kt] and add; analogously, we multiply
k

M (t+kt) = ZZ i

(i+k)t], j=v+1,..,v+r; k=01, ...

6
'70 [t+kr] and add; finally, we multiply

0K
28 ; [t+(i+k)t]  j=v+r+l,..,m;k=0,1,..

5’70 [t+kr] and add. This yields

21 ;[Z Z—,I; [t+(i+k)f]—aj(t+kr)j| % [t+kt] +
| ok

j=v+1

| ond
(+K)T]— V(4 kr)}égi— [t+ke] +

I Dot e | ECAYS R 75)

j=v+r+1

Rearranging terms and considering the nature of the delayed arguments very closely it is
possible to conclude from (7.5) that, in terms of the original control variables,

L oL

E[t]-l_ﬂ[t-ﬂ]:o’ I=1,...m Th<t<T—7; (7.6)
oL

Yo
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These two equations are the first necessary conditions derived from the maximum principle.
Since ((7.1))

L=—F+Xpfi+Xa/W+Z ¢ (7.8)
we have furtherrr(laore

. ety '

yg):flza—pj, j=1,..,n. (7.8a)
In [2] we derived a canonical counterpart of this equation in the form

oL ; .

6’[]+ [t+r]——p() =L, Thi<t<Ti—1; (7.9)

oL .

ﬁ[t]z—p (), k=1,..,n;Ti—t<t<Ty. (7.10)

These are the equations which, together with (7.8), form a canonical system. They can serve
to compute the adjoint variables. Under the conditions imposed the solutions of these equations
are continuous functions on [Tp, T ].

Collecting all conditions to be satisfied by the optimal variables we obtain the following list
(corner points of state- and adjoint variables have to be excluded).

JL oL

%T[t]+a7[t+r]=0, I=1,.,m; Ty<t<T,—7;

az 1 (7.11)
ﬁ[t]=0, I=1,..,m; Ti—t<t<T,;

B () = [t]_éﬁ[] =1, n Ty<t<T,:
. (7.12)

Yo(t) = a(t), vo(t) = B(2) Th—-t<t= Ty yo(T) =Y, *;

oL oL y )
g%[t]—i—g;il—[t-i—r]:—p(t), i=1..,n Th<t<T—71;

(7.13)

L
i[t]z—pi(t), i=1,..,n Ti—1<t< T ;
Yo

On every interval 4, (1< 1< A):

g =0 .
) . }] =1,..,4;
.o/ < 0 and nondecreasing

) (7.14)
g <0 .

. }]=u+l,...,v;
ol < 0 and constant

¢'=0].
l’éO ]:laaq

P <0
P=0

} (7.15)
j=q+1,.

The optimal quantities v}, v, yh, ¥\, p’, o/ and A/ satisfy, by definition, the equations (7.14)—(7.15)
and the maximum principle given in section 6.

* In practice this condition may be used as an end condition for the equations (7.13).
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Remark. 1t can be deduced from the derivations of these results that the theory can immediately
be extended to problems involving variables with lags of the type z, 27, 37, ... .

Remark 2. The conditions (7.14) may be put in the form
#)g't) =0, j=1,...,v, TSt=T ;

MOp')=0, j=1,..,r, T,St=sT,.
and
> j=1,...,v, TOétéTl’

, j=1L .., T, =t=T.

Remark 3. In [2], extensions to the Hamilton-Jacobi equation and variable end point
problems are considered. In particular, transversality conditions are given for free end point
problems with delay.

Moreover, examples are worked out in detail.

8. Conclusions

For optimal centrol problems involving state- and control restrictions and time delay, necessary
conditions for optimality can be derived from the maximum principle. This requires a careful
analysis of the nature of the delayed arguments. Moreover, a particular choice of admissible
variations of the control variables is needed to obtain the maximum-principle in pointwise
form. From this, however, straight-forward analysis leads to a multiplier rule for the present
type of control problems. The theory given can easily be extended to related problems, e.g. to
free end point problems, as given in ref. [2].
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